Nouvelles molécules anti-hypertensives

Stéphane LAURENT, MD, PhD, FESC

Pharmacology Department, Hôpital Européen Georges Pompidou, Paris Cardiovascular Research Center (P.A.R.C.C.), INSERM U970 Université Paris Descartes, Assistance Publique-Hôpitaux de Paris

Institut national de la santé et de la recherche médicale

DISCLOSURE

Stéphane LAURENT, MD, PhD

Potential conflict of interest: Research grant, advisory board, honorarium as speaker or chairman

Drug companies

ASTRA-ZENECA BAYER-SCHERING BOEHRINGER-INGELHEIM CHIESI DAICHII-SANKYO ESTEVE MENARINI MSD NEGMA NOVARTIS PFIZER RECORDATI SERVIER

Manufacturers

ALAM MEDICAL ATCOR AXELIFE ESAOTE-PIE MEDICAL FUKUDA-DENSHI HEMO SAPIENS OMRON TENSIOMED

Rate of discovery of antihypertensive agents ... a peak during the 1970's

Kotchen T. Hypertension 2011

Year(s)	Antihypertensive Agent(s)	
1900	Sodium thiocyanate	
1931	Reserpine	
1947–1950	Ganglion blocking drugs	
1958	Thiazide-type diuretics	
1950s	Hydralazine	
1950s	Guanethidine	
1957	Spironolactone	
1960	Methyldopa	
1973	β -Receptor blockers (eg, propranolol)	BB
1970s	Central α_2 agonists (eg, clonidine)	Centrally acting
1975	Peripheral $lpha_1$ receptor blockers (eg, prazosin)	$\alpha 1$ blockers
1977	ACE inhibitors (eg, captopril)	ACEI
1977	Calcium channel blockers (eg, verapamil, nifedipine)	CCB
1993	Angiotensin II receptor blockers (eg, losartan)	
2000	Renin inhibitors (eg, aliskiren)	

The 1980's and 1990's: two decades of novel ACEIs and ARBs

Date of market authorization in Europe

No novel anti-HT drug during the last 15 years...

...except aliskiren, a renin-inhibitor

Still using « old » antihypertensive agents

Kotchen T. Hypertension 2011

Year(s)	Antihypertensive Agent(s)	
1900	Sodium thiocyanate	
1931	Reserpine	
1947–1950	Ganglion blocking drugs	
1958	Thiazide-type diuretics	Thiazides
1950s	Hydralazine	_
1950s	Guanethidine	
1957	Spironolactone	Spironolactine
1960	Methyldopa	
1973	β -Receptor blockers (eg, propranolol)	BB
1970s	Central α_2 agonists (eg, clonidine)	-
1975	Peripheral α_1 receptor blockers (eg, prazosin)	
1977	ACE inhibitors (eg, captopril)	
1977	Calcium channel blockers (eg, verapamil, nifedipine)	
1993	Angiotensin II receptor blockers (eg, losartan)	
2000	Renin inhibitors (eg, aliskiren)	

New vasodilators: the pipeline

- Systemic hypertension
- Heart failure
- Pulmonary hypertension
- Chronic kidney disease
- Migraine
- Spasm of cerebral artery after subarachnoid hemorrage
- Raynaud phenomenon

• ...

New drugs for hypertension: most of them target the RAAS (I)

Laurent S et al. Lancet 2012

Pharmacological class		Drug	Pre- clinical stage	Phase I-III	Pharmaceutical industry
RERB (renin/prorenin bloc	ker)				
ACE2 activator					
AT2-receptor agonist, non peptide		C21		No anti-HT effect Tissue protection	Vicore Pharma
Aminopeptidase A (APA) inhibitor		QGC001			Quantum Genomics Corp.
Vaccine	Ang I vaccine	PMD3117		Phase II	Protherics Inc.
	Ang II vaccine	Cyt006-AngQb		Phase II	Cytos Biotechnology AG
Dual AT1R/ETA antagonist (DARAs)		PS-433540		Phase II	Ligand Pharmaceuticals
Novel dual ARB/partial PPARγ agonist					
AGE breaker * Development stopped		Alagebrium (ALT-711)		Phase II*	Synvista Therapeutics

New drugs for hypertension: most of them target the RAAS (II)

Laurent S et al. Lancet 2012

Pharmaco	ological class	Drug	Pre-	Phase I-III	Pharmaceutical
	•		clinical		industry
			stano		maasay
Dueluseen	antida a cinkikitan		Stage		
Dual vasop	eptidase inhibitor				
1. Dual NE	EP/ACE inhibitor	llepatril – AVE7688		Phase III	Sanofi-Aventis
2. Dual NEP/ECE inhibitor		Daglutril- SLV306		Phase II*	Solvay Pharmaceuticals
Dual ARNI	(Dual NEPI/ARB)	LCZ696		Phase III	Novartis Pharmaceuticals
Aldosterone synthase		LCI699		Phase II *	Novartis Pharmaceuticals
inhibitor	,				
Endothelin	antagonist	Bosentan		Phase II	Actelion Pharmaceuticals
		Darusentan		Phase III *	Gilead Sciences
NO donor	NO-releasing	Nitrosyl-cobinamide			
	drugs				
	NO-releasing	NO-losartan			Cayman Chemicals
	hybrids	NO-telmisartan			
	CINOD	Naproxcinod		Phase III	NicOx

* Development stopped

New drugs for hypertension (II)

Laurent S et al. Lancet 2012

Pharmacological class		Drug	Pre- clinical stage	Phase I-III	Pharmaceutical industry
Dual vasop	eptidase inhibitor				
1. Dual NE	P/ACE inhibitor	llepatril – AVE7688		Phase III	Sanofi-Aventis
2. Dual NE	P/ECE inhibitor	Daglutril- SLV306		Phase II*	Solvay Pharmaceuticals
Dual ARNI (Dual NEPI/ARB)		LCZ696		Phase III	Novartis Pharmaceuticals
Aldosterone synthase inhibitor		LCI699		Phase II *	Novartis Pharmaceuticals
Endothelin antagonist		Bosentan		Phase II	Actelion Pharmaceuticals
		Darusentan		Phase III *	Gilead Sciences
NO donor NO-releasing drugs		Nitrosyl-cobinamide			
	NO-releasing	NO-losartan			Cayman Chemicals
	hybrids	NO-telmisartan			
	CINOD	Naproxcinod		Phase III	NicOx

* Development stopped

Pure and dual NEP inhibitors

Pure NEP inhibitors					
candoxatril	Pfizer				
ecadotril	Bioprojet				
thiorphan	Bioprojet				

Counter-regulation with pure NEP inhibitors

Counter-regulation with pure NEP inhibitors

Counter-regulation with pure NEP inhibitors

Pure and dual NEP inhibitors

Pure NEP inhibitors		Dual	NEP/ACE inhibi	itors
candoxatril ecadotril thiorphan	Pfizer Bioprojet Bioprojet	omapatrilat <i>Ki NEP 8.9 nM</i> fasidotril, alatri <i>Ki NEP 5.1 nM</i> sampatrilat	BMS <i>, Ki ECA 6.0 nM</i> iopril Biopro <i>, Ki ACE 9.8 nM</i> Pfizer	jet
		<u>Also:</u> BMS-Sanofi Merrel-Dow Novartis Schering Zambon		Neprilysin

Dual NEP/ACE inhibitors

Antihypertensive effects of fasidotril in low- and high-renin hypertension in rat

Laurent S et al. Hypertension 2000

Model	Hypertension
Goldblatt 2K-1Clip	renin-dependent
DOCA-sel	volume-dependent
SHR	renin > volume

Omapatrilat

- Dual NEP/ACE inhibitor ACE $K_i = 6 \text{ nM}$ NEP $K_i = 9 \text{ nM}$
- Orally active

- Antagonises the BP response to Ang I in rats
- Enhances the natriuretic effect of ANP in rats
- Lowers BP in different animal models of hypertension independently of the renin status
- Increases urine ANP concentrations in humans dose-dependently

Larochelle et al. Am J Hypertens. 2003

Changes in trough BP at week 9 (mmHg)

Dual NEP/ACE inhibitors

OCTAVE: Severity of angioedema

Kostis JB et al. Am J Hypertens. 2004

	Omapatrilat (n=12,609)	Enalapril (n=12,557)	Absolute difference
No treatment, or treated with antihistamines only	162 (1.28%)	65 (0.52%)	0.76%
Treated with epinephrine or steroids; no airway compromise	110 (0.87%)	21 (0.17%)	0.71%
Airway compromise	2	0	_
TOTAL	274	86	_

Double-blind, randomized, multicenter, parallel groups, 6 months

In vitro inhibitory effects of AVE 7688 (Ilepatril) and omapatrilat on ACE and NEP

Ilepatril, AVE 7688

AVE 7688	IC50 ACE	0.052 nM	G	
(llapatril)	IC 50 NEP	5 nM		
ratio	ACE/NEP	0.01		T358 T258
Omapatrilat	Ki ACE	6 nM		
-	Ki NEP	8.9 nM		
ratio	ACE/NEP	0.67		<u>IC50</u>
			— <u>huma</u>	an aminopeptidase P (APP)
			AVE 7688 (AVE8048)	6 100 000 nM
			Omapatrilat	66 nM
			M100240 (MDL100,173)	18 000 nM
			Apstatin	2 300 nM
			(a specific APP inhibitor)	Adam et al., 2004

Ilepatril: intensity and duration of ACE inhibition by comparison to other ACEIs or VPI

Azizi M et al. Clin Pharm Ther 2006

Azizi M et al. Clin Pharm Ther 2006

3 pharmacological classes around NEP inhibition

Laurent S et al. Lancet 2012

Pharmacolo	gical class	Drug	Pre- clinical stage	Phase I-III	Pharmaceutical industry
Pure NEP inh	ibitor				
Dual vasopep	tidase inhibitor				
1. Dual NEP/	ACE inhibitor	llepatril – AVE7688		Phase III*	Sanofi-Aventis
2. Dual NEP/	ECE inhibitor	Daglutril- SLV306		Phase II*	Solvay Pharmaceuticals
Dual ARNI	(Dual NEPI/ARB)	LCZ696		Phase IV	Novartis Pharmaceuticals
Aldosterone s	synthase inhibitor	LCI699		Phase II *	Novartis Pharmaceuticals
Endothelin antagonist		Bosentan		Phase II	Actelion Pharmaceuticals
		Darusentan		Phase III *	Gilead Sciences
NO donor	NO-releasing drugs	Nitrosyl- cobinamide			
*	NO-relasing hybrids	NO-losartan NO-telmisartan			Cayman Chemicals
" Developmei	t stopped	Naproxcinod		Phase III	NicOx

LCZ696: a dual-acting inhibitor of the angiotensin II receptor and neprilysin (dual ARNi)

Gu J et al. J Clin Pharmacol, 2010

Single molecule in which the molecular moieties of valsartan and the molecular moieties of the NEP inhibitor prodrug AHU377 are present in a 1:1 molar ratio.

LCZ696: a dual-acting inhibitor of the Angiotensin II Receptor and Neprilysin (dual ARNi)

and reduction of target organ damage

Effects of AHU377 and LCZ696 on SBP in 1085 mild to moderate hypertensive patients

Ruilope LM et al. Lancet 2010

Dual ARNi vs dual NEP/ACE inhibitors Less increase in BK \rightarrow less risk of angioedema

LCZ696: RCTs (March 2017)

www.clinicaltrials.org

Safety of AHU377 and LCZ696 in 1085 mild to moderate hypertensive patients

Ruilope LM et al. Lancet 2010

	Pbo	AHU377	LCZ696 100 mg	LCZ696 200 mg	LCZ696 400 mg	Vals. 80 mg	Vals. 160 mg	Vals. 320 mg
Any AE	49 (28%)	45 (27%)	36 (23%)	40 (24%)	50 (29%)	36 (22%)	34 (20%)	38 (23%)
Diarrhoea	3 (2%)	3 (2%)	2 (1%)	0	5 (3%)	1 (1%)	1 (1%)	3 (2%)
Back pain	2 (1%)	3 (2%)	1 (1%)	1 (1%)	4 (2%)	3 (2%)	1 (1%)	1 (1%)
Bronchitis	4 (2%)	2 (1%)	1 (1%)	0	4 (2%)	3 (2%)	4 (2%)	1 (1%)
Cough	2 (1%)	2 (1%)	1 (1%)	2 (1%)	4 (2%)	2 (1%)	0	1 (1%)
Dizziness	2 (1%)	0	1 (1%)	1 (1%)	1 (1%)	0	1 (1%)	3 (2%)
Dyspepsia	0	0	1 (1%)	0	3 (2%)	1 (1%)	0	0
Headache	13 (8%)	5 (3%)	4 (3%)	4 (2%)	4 (2%)	5 (3%)	4 (2%)	3 (2%)
Influenza	3 (2%)	1 (1%)	3 (2%)	2 (1%)	3 (2%)	2 (1%)	1 (1%)	4 (2%)
Nasopharyngitis	3 (2%)	3 (2%)	5 (3%)	2 (1%)	2 (1%)	3 (2%)	2 (1%)	2 (1%)
Pruritus	0	2 (1%)	0	4 (2%)	1 (1%)	2 (1%)	0	0
Pharyngitis	4 (2%)	1 (1%)	2 (1%)	1 (1%)	0	0	0	1 (1%)
Sinusitis	2 (1%)	2 (1%)	3 (2%)	0	1 (1%)	2 (1%)	1 (1%)	2 (1%)
URTI	0	2 (1%)	2 (1%)	0	1 (1%)	2 (1%)	3 (2%)	2 (1%)
GI	0	1 (1%)	0	1 (1%)	3 (2%)	1 (1%)	1 (1%)	1 (1%)

No episode of angioedema ...but n=3 expected at a rate of 0.5%

Antihypertensive efficacy of LCZ696 in 389 mild to moderate Asian hypertensive patients

Kario K et al. Hypertension 2014

LCZ696: RCTs (March 2017)

The system of natriuretic peptides as an emerging target for the treatment of heart failure and hypertension

Volpe et al. Eur Heart J 2014

PARAMOUNTThe angiotensin receptor neprilysin inhibitor LCZ696 in
heart failure with preserved ejection fraction: a phase 2
double-blind randomised controlled trialLancet 2012

Scott D Solomon, Michael Zile, Burkert Pieske, Adriaan Voors, Amil Shah, Elisabeth Kraigher-Krainer, Victor Shi, Toni Bransford, Madoka Takeuchi, Jianjian Gong, Martin Lefkowitz, Milton Packer, John J V McMurray, for the Prospective comparison of ARNI with ARB on Management Of heart failUre with preserved ejectioN fracTion (PARAMOUNT) Investigators*

Phase II, randomised, parallel-group, double-blind multicenter trial

Proof of concept in HFpEF

NYHA class II-III heart failure + LVEF > 45% + NT-proBNP > 400 pg/ml

n= 149, LCZ696 up to 200 mg bid

n=152, valsartan up to 160 mg bid

Equipotent ARB doses

Duration 36 weeks (9M)

NT-proBNP, surrogate for HF

PARAMOUNTThe angiotensin receptor neprilysin inhibitor LCZ696 in
heart failure with preserved ejection fraction: a phase 2
double-blind randomised controlled trialLancet 2012

Scott D Solomon, Michael Zile, Burkert Pieske, Adriaan Voors, Amil Shah, Elisabeth Kraigher-Krainer, Victor Shi, Toni Bransford, Madoka Takeuchi, Jianjian Gong, Martin Lefkowitz, Milton Packer, John J V McMurray, for the Prospective comparison of ARNI with ARB on Management Of heart failUre with preserved ejectioN fracTion (PARAMOUNT) Investigators*

	36 v	wee <mark>ks</mark>					
	LCZ696		Valsartan			p value	
	n	Baseline	∆ from baseline	n	Baseline	∆ from baseline	
Ejection fraction	94	58·3% (7·7)	2.7% (6.5)	111	58·1% (8·0)	3·07% (5·9)	0.69
Lateral mitral annular relaxation velocity (e'; cm/s)	84	7·6 (2·7)	0·55 (2·3)	96	7·3 (2·8)	0·92 (2·0)	0.40
Mitral inflow velocity to mitral annular relaxation velocity ratio (E/e')	83	12·3 (5·5)	-1·3 (3·1)	95	12·7 (6·2)	-1·0 (4·7)	0.42
Early to late mitral inflow velocity ratio (E/A)	60	1·1 (0·51)	-0·05 (0·39)	68	1·1 (0·65)	-0·03 (0·61)	0.43
Left atrial width (cm)	99	3·7 (0·43)	-0·15 (0·31)	108	3·7 (0·53)	-0·08 (0·30)	0.03
Left atrial volume (mL)	96	65·3 (22·5)	-4·6 (13·7)	112	68·3 (29·3)	0·37 (15·9)	0.003

PARAGON-HF Experimental design (clinicaltrials.gov)

Phase III, randomised, parallel-group, double-blind multicenter trial

End point study in HFpEF

Age > 55 yrs NYHA class II-IV heart failure with Preserved Ejection Fraction (LVEF \geq 45%)

Total number of patients 4300

LCZ696 100 mg bid Valsartan 80 mg bid

FU up to 57 months

Primary end-point CV death + hosp. for CHF

Expected primary completion: May 2019

PARADIGM-HF Angiotensin–Neprilysin Inhibition versus Enalapril in Heart Failure

John J.V. McMurray, M.D., Milton Packer, M.D., Akshay S. Desai, M.D., M.P.H., Jianjian Gong, Ph.D., Martin P. Lefkowitz, M.D., Adel R. Rizkala, Pharm.D., Jean L. Rouleau, M.D., Victor C. Shi, M.D., Scott D. Solomon, M.D., Karl Swedberg, M.D., Ph.D., and Michael R. Zile, M.D., for the PARADIGM-HF Investigators and Committees*

McMurray JJV et al. NEJM 2014

Phase III, randomised, parallel-group, double-blind multicenter trial

End point study in HFrEF

NYHA class II-IV heart failure LVEF < 40% and then < 35% NT-proNBP > 600 pg/ml

 $\begin{array}{l} n=4187 \quad LCZ696 \ 200 \ mg \ bid \\ n=4212 \quad Enalapril \ 10 \ mg \ bid \end{array}$

Median FU 27 months

Primary end-point CV death + hosp. for CHF

PARADIGM-HF Angiotensin–Neprilysin Inhibition versus Enalapril in Heart Failure

John J.V. McMurray, M.D., Milton Packer, M.D., Akshay S. Desai, M.D., M.P.H., Jianjian Gong, Ph.D., Martin P. Lefkowitz, M.D., Adel R. Rizkala, Pharm.D., Jean L. Rouleau, M.D., Victor C. Shi, M.D., Scott D. Solomon, M.D., Karl Swedberg, M.D., Ph.D., and Michael R. Zile, M.D., for the PARADIGM-HF Investigators and Committees*

McMurray JJV et al. NEJM 2014

PARADIGM-HF Angiotensin–Neprilysin Inhibition versus Enalapril in Heart Failure

John J.V. McMurray, M.D., Milton Packer, M.D., Akshay S. Desai, M.D., M.P.H., Jianjian Gong, Ph.D., Martin P. Lefkowitz, M.D., Adel R. Rizkala, Pharm.D., Jean L. Rouleau, M.D., Victor C. Shi, M.D., Scott D. Solomon, M.D., Karl Swedberg, M.D., Ph.D., and Michael R. Zile, M.D., for the PARADIGM-HF Investigators and Committees*

McMurray JJV et al. NEJM 2014

PARADIGM-HF

Adverse effects

Event	LCZ696 (N=4187)	Enalapril (N = 4212)	P Value
	r	10. (%)	
Hypotension			
Symptomatic	588 (14.0)	> 388 (9.2)	<0.001
Symptomatic with systolic blood pressure <90 mm Hg	112 (2.7)	> 59 (1.4)	<0.001
Elevated serum creatinine			
≥2.5 mg/dl	139 (3.3)	< 188 (4.5)	0.007
≥3.0 mg/dl	63 (1.5)	83 (2.0)	0.10
Elevated serum potassium			
>5.5 mmol/liter	674 (16.1)	727 (17.3)	0.15
>6.0 mmol/liter	181 (4.3)	< 236 (5.6)	0.007
Cough	474 (11.3)	601 (14.3)	<0.001

Adverse effects and angioedema: no significant difference

Table 3. Adverse Events during Randomized Treatment.*			
Event	LCZ696 (N=4187)	Enalapril (N = 4212)	P Value
	no.	(%)	
Angioedema†	n=19	n=10	
No treatment or use of antihistamines only	10 (0.2)	5 (0.1)	0.19
Use of catecholamines or glucocorticoids without hospitalization	6 (0.1)	4 (0.1)	0.52
Hospitalization without airway compromise	3 (0.1)	1 (<0.1)	0.31
Airway compromise	0	0	_

Angioedema	Adjudication	Committee:	Allen	Ρ.	Kaplan	(Chair),	Nancy
Brown, Bruce	Zuraw.						

Adverse effects and angioedema: no significant difference

Table 3. Adverse Events during Randomized Treatment.*			
Event	LCZ696 (N=4187)	Enalapril (N = 4212)	P Value
	no.	(%)	
Angioedema †	n=19	n=10	
No treatment or use of antihistamines only	10 (0.2)	5 (0.1)	0.19
Use of catecholamines or glucocorticoids without hospitalization	6 (0.1)	4 (0.1)	0.52
Hospitalization without airway compromise	3 (0.1)	1 (<0.1)	0.31
Airway compromise	0	0	

The benefit / risk ratio is very much in favor of the benefit in very high risk patients

NEP inhibitors

- 30 years of research and development until the PARADIGM study ...
- Effective when combined with an angiotensin II AT1-R antagonist
- A promising novel pharmacological class for heart failure

- Angioedema remain a matter of concern and require a close follow-up in hypertensive patients

Additional novel drugs for hypertension (II)

Pharmacological class		Drug	Pre- clinical stage	Phase I-III	Pharmaceutical industry
RERB (renin/prorenin bloc	ker)				
ACE2 activator					
AT2-receptor agonist, non peptide		C21		No anti-HT effect Tissue protection	Vicore Pharma
Aminopeptidase A (APA) inhibitor		QGC001			Quantum Genomics Corp.
Vaccine	Ang I vaccine	PMD3117		Phase II	Protherics Inc.
	Ang II vaccine	Cyt006-AngQb		Phase II	Cytos Biotechnology AG
Dual AT1R/ETA antagonist (DARAs)		PS-433540		Phase II	Ligand Pharmaceuticals
Novel dual ARB/partial PPARγ agonist					
AGE breaker * Development stopped		Alagebrium (ALT-711)		Phase II*	Synvista Therapeutics

Non peptide agonists and antagonists of the angiotensin II AT1 and AT2 receptors

Wan et al. J Med Chem 2004

ΔT1-R	AT1-R	AT2-R	AT2-R
+		+	
	-		-

Compound 21, a selective agonist of angiotensin AT2 receptors

Compound 21 = first non peptide selective angiotensin II AT2 receptor agonist

*K*i value = 0.4 nM for the AT2 receptor *K*i >10 μ M for the AT1 receptor

Oral bioavailability = 20-30% Half-life # 4 h in rat

AT2-R mediated molecular pathways involved in tissue injury

Steckeling UM et al. Curr Hypertens Rep 2014

AT2-receptor stimulation

- prevents hypertensive end-organ damage
- improves neurological outcome after stroke
- prevents pulmonary hypertension in a pulmonary fibrosis model

C21, an AT2-R agonist, is not a BP lowering drug

Paulis L, ... Steckeling UM. Hypertension 2012

L-NAME = inhibitor of constitutive NO synthase (NOS)

Effects of AT2-R stimulation on the rat aorta

Paulis L, ... Steckeling UM, Hypertension 2012

Effects of AT2-R stimulation on the rat aorta

Paulis L, ... Steckeling UM, Hypertension 2012

AT2-R mediated molecular pathways involved in tissue injury

Additional novel drugs for hypertension (II)

Pharmacological class		Drug	Pre- clinical stage	Phase I-III	Pharmaceutical industry
RERB (renin/prorenin bloc	ker)				
ACE2 activator					
AT2-receptor agonist, non peptide		C21		No anti-HT effect Tissue protection	Vicore Pharma
Aminopeptidase A (APA) inhibitor		QGC001			Quantum Genomics Corp.
Vaccine	Ang I vaccine	PMD3117		Phase II	Protherics Inc.
	Ang II vaccine	Cyt006-AngQb		Phase II	Cytos Biotechnology AG
Dual AT1R/ETA antagonist (DARAs)		PS-433540		Phase II	Ligand Pharmaceuticals
Novel dual ARB/partial PPARγ agonist					
AGE breaker * Development stopped		Alagebrium (ALT-711)		Phase II*	Synvista Therapeutics

A new strategy for treating hypertension by blocking the activity of the brain renin–angiotensin system with aminopeptidase A inhibitors

Ji GAO*, Yannick MARC*†, Xavier ITURRIOZ*, Vincent LEROUX*, Fabrice BALAVOINE† and Catherine LLORENS-CORTES*

*Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, CIRB, Collège de France, INSERM U1050, Paris, F-75231, France †Quantum Genomics, Massy, F-91300, France Gao J et al, Clinical Science 2014

Aminopeptidase A (APA)

- membrane bound zinc metalloprotease
- involved in the metabolism of Ang II ad Ang III
- can be blocked *in vivo* (PNAS 1999)

Brain Renin-Angiotensin System

Gao J et al, Clinical Science 2014

QGC001, an orally active APA inhibitor (BAPAi), is a centrally acting antiHT

Orally active QGC001 is a pro-drug, generating 2 active molecules of APA inhibitor (EC33)

Change in BP in conscious SHR after oral RB150 or enalapril

Marc Y et al, Hypertension 2012

- RB150 (= QGC001) does not modify the systemic RAS activity
- RB150 (= QGC001) might be used in combination with classic RAS blockers to improve BP control

Phase I study: Single oral administration of QGC001 on supine BP

Balavoine F et al, Clin Pharmacokinet 2014

QGC001, APA inhibitor: ongoing RCTs (March 2016)

www.clinicaltrials.org

New drugs for hypertension: conclusion

- The pipeline is not dry....
- Several novel pharmacological classes are in development, with first-in-class molecules reaching phase II and III
- ...but the development of some promising novel drugs has been stopped

 A gap of few years is expected before leading compounds of novel pharmacological classes are marketed

New drugs for hypertension: conclusion

- The pipeline is not dry....
- Several novel pharmacological classes are in development, with first-in-class molecules reaching phase II and III
- ...but the development of some promising novel drugs has been stopped

- A gap of few years is expected before leading compounds of novel pharmacological classes are marketed
- Huge efforts have been made to synthesize novel molecules either combining the beneficial effects of known pharmacological classes or addressing an entirely novel mechanism of action
- These efforts may not only benefit to hypertensive patients ...
- ...but also to patients suffering from other disease (Pulmonary Hypertension, CHF, Cushing syndrome)

Merci !